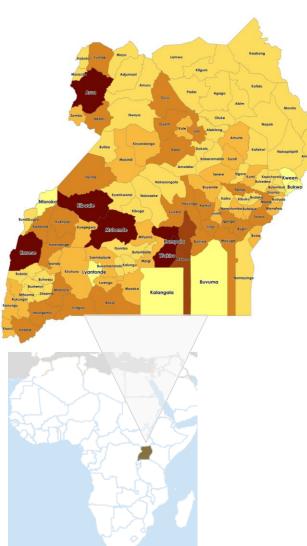
Uganda – Lessons Learned from Improving Vaccine Management Using EVM Approach

14th TechNet Conference Bangkok Thailand 11 – 15 MAY 2015

> William Musubire Vaccine Store Management Officer Uganda

Presentation outline

Country context


Integrated Management as a way forward

How it works in Uganda?

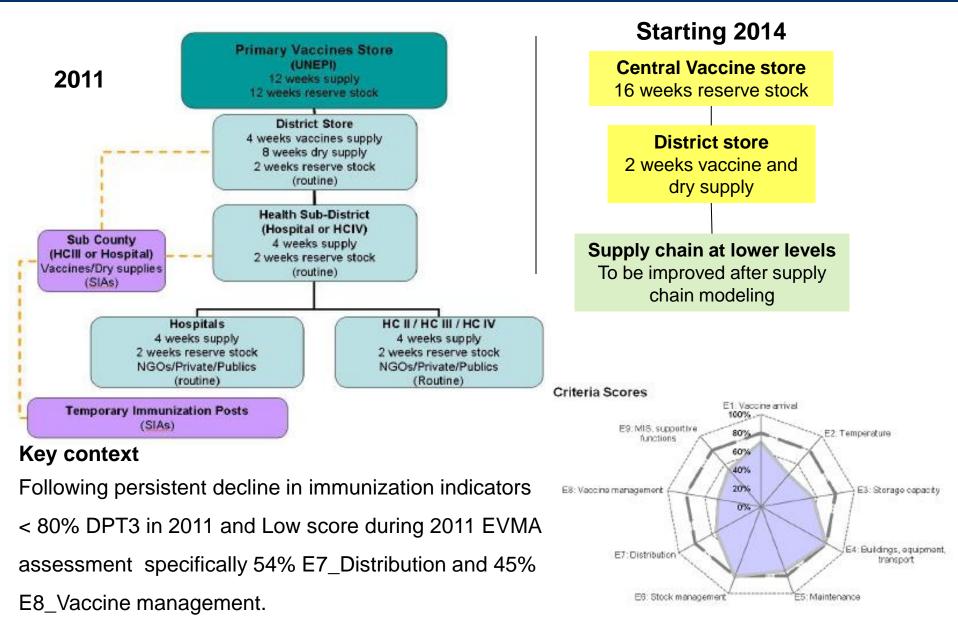
The EVM assessment and progress with key notes

Benefits of integration

Country Context

Republic of Uganda is located in sub-Saharan Africa along the equator and covers an area of 241,550 km²

Country statistics


Total population (2014) [1]	34,856,813
% Population under 15 (2012)	48.54
% Population over 60 (2012)	3.72
Life expectancy at birth (2012)	57
Neonatal mortality rate per 1000 live births (2012)	23
Under-5 mortality rate per 1000 live births (2012)	69
Maternal mortality ratio per 100 000 live births(2010)	310
% Births attended by skilled health workers (2011)	58
Density of physicians per 1000 population (2005)	0.117
Density of nurses and midwives per 1000 population (2005)	1.306
Total expenditure on health as % of GDP (2011)	9.5
Government expenditure on health as % of total government expenditure (2011)	10.8
Adult (15+) literacy rate (2010)	73.2
Gross National Income per capita US\$ (2013) [2]	440
GDP per capita \$ (2010) [2]	1,028
Source: Global Health Observatory April 2014	

Global Health Observatory April 2014 http://apps.who.int/gho/data/node.cco

[1] Uganda National Population and Housing census 2014

[2] GAVI Full Country Evaluation: Annual Progress Report 2013

Context of Immunization Supply Chain Management ISCM in 2011 versus 2014

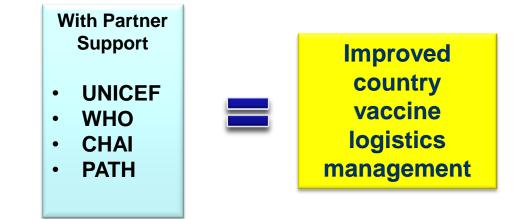
In 2012, the vaccine logistics function was transferred to the government pharmaceutical warehouse and medical logistics; National Medical Stores – NMS

Expected benefits from this integration were;

- a. <u>Use the vast warehousing and distribution expertise of NMS to improve</u> vaccines delivery lead time.
- b. <u>Use the already existing NMS refrigerated trucks</u> and other fleet to distribute vaccine supplies
- c. <u>Use NMS logistics expertise</u> and synergies to lower vaccine storage and distribution costs.
- d. Ensuring sustainability of in-country vaccines delivery system

Above all having strong team work, dedication and supportive management

How it works


<u>UNEPI</u>

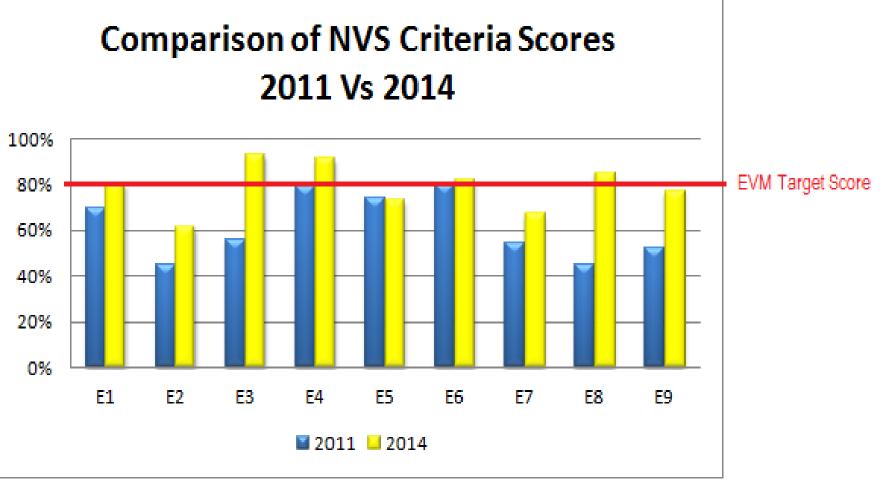
- Policy formulation
- Setting standards
- Supervision
- Training
- Monitoring & evaluation

<u>NMS</u>

Storage & Distribution

Collaborative vaccine forecasting

Phase One (2012)


- 1. NMS procures vaccines and related supplies
- 2. Storage of vaccines at NVS
- 3. Distribution from NVS to DVS

Phase Two (starting 2014)

- a. Last mile delivery up to health facility level
- b. Maintenance of cold chain equipment at DVS

Measuring progress through the EVM assessment

 NVS showed significant improvement in all the 9 criteria including five meeting the 80% standards set for countries to achieve under the EVM initiatives

Storage and transport capacity improvement

Storage specifics

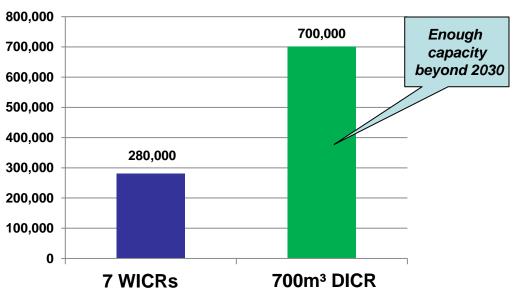
- DVS and SP storage mainly LPG absorption fridges
- Storage capacity affected by frequent breakdown and delayed supplied of LPG from the centre
- Improved Dry storage at NVS

What has been introduced

- Fully refrigerated trucks move vaccines from NVS to DVS (with monitored temperature conditions)
- Improved storage practices and systems at the NVS

Planned Strategic improvements

- a. Next 5 years, replace 70% of LPG with Solar DD fridges (sustainability)
- b. Build capacity: installation and maintenance of Solar DD
- c. With increased rural electrification: Turn EG fridge to main power grid



Long term vision!

- Cold storage expansion has been gradual over last 10 years (GAVI applications)
- 7 WICRs approved for all new vaccine introductions till 2018. (*still not enough*)
- Shift from multiple WICRs to single DICR (700 m³)

Comparative storage capacities in litres

DICR option will offer an additional **420,000 litres** versus 280,000 litres from seven WICRs

Benefits

- Less time spent on repeated planning to increase storage capacity
- More time focused on improving operations and vaccine management

Technical support needed Layout design of DICR to maximise available space

Stock Management

Major EVMA findings

- Facilities ordering based on consumption
- Stock out of data tools (VIMCB) still a challenge
- Wastage calculations not done
- VVM changes not recorded

Key learnings

- a. Regular stock count to update inventory records
- b. Keeping all relevant stock records (performance reporting, root cause analysis and corrective action)
- Need to have regular exchange of stock information between national and district vaccine stores

Technical support needed: SMT, DVD MT and IRP tools working in silos; *How can we integrate all these tools to relay data to the centre*?

Maintenance management

EVMA Findings

- Reactive maintenance (Breakdowns)
- No planned preventive maintenance
- Maintenance records lacking
- No maintenance SOPs (new equipment)
- Updating the Cold Chain Inventory started

Critical Corrective Action

 Develop a planned preventive maintenance program

Key learnings

- a. Use maintenance record trends to identify skills gap (both user and technician)
- b. Regular update of CCI
- c. Review maintenance records to guide future selection of PQS equipment.
- d. Regular reporting on status of equipment maintenance. *(at country EPI technical meetings)*

Technical support needed:

- Developing systems for planned Preventive Maintenance
- Developing SOPs (SDD systems)

Mgt Information System & Supportive functions

Major EVMA findings

Wastage calculations not done Frequent stock out of data tools at DVS and SP

Critical constraints in LMIS

- Logistics data is managed in silos at all levels
- Heavily paper based (analysis constraint)
- No country snapshot visibility of key indicators.

Ongoing

Updating supportive supervision check-list to add EVMA criteria checks

Technical support needed:

• Linking all available tools to a central EPI depository

(with possibility of data access via cloud)

- Centralized report generator for key EPI indicators
- Training and roll out of current versions of DVD MT, DHS, SMT

Distribution Management

EVMA findings

- Use of vaccine carrier however conditioning of ice pack not properly done.
- Fully refrigerated trucks (2°-8°C) distribute vaccines from NVS to DVS.
- Monitored temperature conditions during distribution (Log tags and freeze tags)
- Good contingency plan for NVS .. Refrigerated Trucks used as the option.

Key learnings

- a. Irregular and non standardised last mile distribution (LMD) of vaccines.
- b. Delayed supply to facilities results in:
 - Reduced ordering from NVS due to limited DVS storage capacity
 - Risk of stock out of vaccines at service point
- c. Distribution performance indicators hard to get at this supply level

Technical support needed:

- Supply chain modelling to determine best vaccines LMD method to SP.
- New technologies that prevent freezing during transportation (vaccine carrier)
- Possibility of Policy shift from conditioned ice packs to cool packs (WHO)

Vaccine management procedures

Major EVMA findings

- Good understanding and use of VVM at all levels
- MDVP appropriately used
- Knowledge & use of Shake Test procedure still a challenge at DVS and HF level
- Vaccine wastage not tracked

Key learning's

- a. Lack of wastage data plus lack of corrective measures causing reduced stock availability at facility *(i.e faster depletion of stock)*
- b. Need for strengthening wastage monitoring through supportive supervision (include wastage monitoring on supervision checklist).
- c. Start regular updates on all EVMA criteria during monthly EPI technical meetings

Technical support needed:

Continued support during planning and implementing of in-country trainings

Benefits of Integration

UNEPI and NMS work with partners UNICEF, WHO, CHAI and PATH under the

Vaccines Management Committee

- Forecasting
- Stock reviews
- Policy formulation (Logistics)
- Monitoring vaccine utilisation and wastage

A forum for collaborative approach to solving EPI logistics issues

Benefits

- a. Improved monthly distribution to districts (vaccines and LPG)
- b. Easier consultations and quick transfer of technical information
- c. Improved immunisation coverage (DPT3 <80% in 2011 and >95% in 2014)
- d. Improved storage and stock data management at central level
- e. Faster and reliable reporting from central and district level. (improved communication)
- f. Improved 2014 EVMA scores at NVS level
- g. NMS providing maintenance support at DVS level
- h. Collaborative training of DCCAs in vaccine logistics management

Working together to make the improvement

Thank You

