

Vaccine Supply Chain Modeling: The HERMES Project

For more information, please visit: hermes.psc.edu

MPUTING

BLOOMBERG SCHOOL of Public Health

HERMES vision

For more information, please visit: hermes.psc.edu

Example topics HERMES can address

Introducing new vaccines and technology

e.g., vaccines, storage

Monitoring the health and status of the supply chain

e.g. augment imperfect surveillance of the immunization program

Altering characteristics of vaccines and other technologies

e.g., vaccine vial size, vaccine thermostability, cold device capacity

Changing configuration and operations of the supply chain

e.g., storage, shipping frequency, personnel, ordering policy

Differing conditions/circumstances

e.g., power outages, delays, inclement weather, limited access

Investing or allocating of resources

e.g., adding refrigerators vs. increasing transport frequency

Optimizing vaccine delivery

e.g., minimize cost, cost per outcome, maximize immunizations

HERMES global work

2009 Formation of HERMES Logistics Team

JOHNS HOPKINS BLOOMBERG SCHOOL

Thailand

- · Partners: Prince of Songkla University and MOH
- Evaluated:
 - Impact of changing vaccine presentations
 - · Impact of PCV and RV introductions
 - · Impact of vendor-managed inventory system

Senegal

- Partners: Senegal EPI Team and Project Optimize
- Evaluated:
 - Impact of changing vaccine presentations
 - Impact of PCV and RV introductions
 - Impact of Mobile Warehouse
- In-country hands-on workshop

Passive Vaccine Storage Devices (PVSDs)

- Partners: Global Good
- Evaluated:
 - Potential designs and impact of PVSDs

India (Bihar, Kerala, & Gujarat)

- Partners: INCLEN, ITSU, PHFI
- Evaluated:
 - Current UIP status
 - Impact of isolated and combined introduction Rotavac, IPV, PCV, and Pentavalent vaccines
 - Simple, Complex and Radical improvements

Decade of Vaccines Economics (DOVE) Collaboration

- Partners: BMGF, GAVI, WHO, UNICEF
- Evaluated:
 - Vaccine delivery costs in all GAVI-eligible countries

Niger

- Partners: Niger Ministry of Health (MOH) and WHO
- Evaluated:
 - Impact of changing vaccine presentations
 - Impact of PCV and RV introductions
 - Impact of system redesign
 - Impact of thermostable vaccines
 - · Impact of information system

Vietnam

- Partners: Vietnam MOH and EPI Team and Project
 Optimize
- Evaluated:
 - Impact of changing vaccine presentations
 - · Impact of PCV and RV introductions
- Impact of system redesign
- · In-country hands-on workshop

Vaccine Supply Chain Re-Design

- Partners: Bill and Melinda Gates Foundation (BMGF) Co-Chair Meetings
- Evaluated:
 - Segmentation analysis of all GAVI eligible country supply chains
 - Potential supply chain redesign (simplification) in three sample countries

Benin

- Partners: Benin MOH, LOGIVAC Project (AMP and WHO), UNICEF, and PATH
- Evaluated:
 - Impact of system redesign
- In-country workshops

Kenya

- Partners: Kenya MOH and UNICEF
- Assisted with:
 - Development of GAVI HSS Proposal

Mozambique (Gaza & Cabo Delgado)

- Partners: UNICEF and Village Reach
- Evaluated:
 - Current supply chain performance
 - Impact of system redesign

For more information, please visit: hermes.psc.edu

- .
- 2014

2013

Modeling Vaccine Supply Chains

Mall Tahoua Niger Inder Zamfara Katsina Jigawa of State Geographe Kano 2 MapLink/Tele Atlas

Mozambique Workshop on Modeling and HERMES

The workshop provided the first step in capacity building and creating a local team of experts on the concept of modeling and the HERMES tool.

Participants included Ministry of Health national and provincial level, UNICEF, WHO, University of Eduardo Mondlane, VillageReach, and the HERMES Logistics team

Sample HERMES publications

Introducing new vaccines and technology

- Lee BY, Assi T, Rajgopal J, Norman BA, Chen S, Brown ST, Bailey RR, Kone S, Kenea H, Welling J, Connor DL, Wateska AR, Jana A, Wiringa AE, Van Panhuis WG, Burke DS. (2012) Impact of introducing the pneumococcal and rotavirus vaccines into the routine immunization program in Niger. Am J Public Health, 102(2):269-76.
- Norman BA, Nourollahi S, Chen S, Brown ST, Claypool EG, Connor DL, Schmitz MM, Rajgopal J, Wateska AR, Lee BY. (2013) A passive cold storage device economic model to evaluate selected immunization location scenarios. Vaccine, 31(45):5232-8.
- + 3 more

Altering characteristics of vaccines and other technologies

- Lee BY, Cakouros BE, Assi TM, Connor DL, Welling J, Kone S, Djibo A, Wateska AR, Pierre L, Brown ST. (2012) The impact of making vaccines thermostable in Niger's vaccine supply chain. Vaccine, 30(38):5637-43.
- Lee BY, Assi T, Rookkapan K, Connor DL, Rajgopal J, Sornsrivichai V, Brown ST, Welling J, Norman BA, Chen S, Bailey RR, Wiringa AE, Wateska AR, Jana A, Van Panhuis WG, Burke DS. (2011) Replacing the measles ten-dose vaccine presentation with the single-dose presentation in Thailand. Vaccine, 29(21):3811-7.
- + 2 more

Changing configuration and operations of the supply chain

- Assi TM, Brown, ST, Kone S, Norman BA, Djibo A, Connor DL, Wateska AR, Rajgopal J, Slayton RB, Lee BY. (2013) Removing the regional level from the Niger vaccine supply chain. Vaccine, 31(26):2828-34.
- + 2 more

Investing or allocating resources

- Haidari LA, Connor DL, Wateska AR, Brown ST, Mueller LE, Norman BA, Schmitz MM, Paul P, Rajgopal J, Welling JS, Leonard J, Chen S, Lee BY. (2013) Augmenting transport versus increasing cold storage to improve vaccine supply chains. Plos One, 8(5):e64303.
- + 1 more

Optimizing vaccine delivery

Brown ST, Schreiber B, Cakouros BE, Wateska AR, Dicko HM, Connor DL, Jaillard P, Mvundura M, Norman BA, Levin C, Rajgopal J, Avella M, Lebrun C, Claypool E, Paul P, Lee, BY. (2014) The benefits of redesigning Benin's vaccine supply chain. Vaccine, 32(32):4097-103.

HERMES graphical user interface (GUI)

elcome	e Models	Реор	le Vac	cines Col	dStorage	Transpor	t Demand	Costs	Run Hermes	Results	Developer	Help
Welcom	ne										l	?
Vaccine	Results											0
	Vaccine	Av	ailability	Vials Used	Doses Per Vial	Doses Requested	Doses Administered	Open Vial Waste	Percent Stored 2 to 8 C	Percent Store Below 2C	Vials Spoiled	
Measles 10 Dose	s Vaccine Gene	eric	85.37%	51,646	10	322,743	275,512	46.65%	100.00%	0.00%		o 🛋
DTP HepB Hib Generic 2 Dose		2	94.79%	519,861	2	1,067,900	1,012,235	2.64%	100.00%	0.00%		•
Tetanus 10 Dose	Toxoid Generi	c	95.50%	60,332	10	631,420	603,028	0.05%	100.00%	0.00%		o = 🔨
Prevena	ar PCV13 1 Dos	e	94.86%	969,903	1	1,022,473	969,903	0.00%	100.00%	0.00%		1
BCG Ge	eneric		89.69%	32,032	20	362,254	324,908	49.28%	100.00%	0.00%		0
OPV Ge	eneric 20 Dose		95.42%	67,968	20	1,424,008	1,358,855	0.04%	16.35%	83.65%		0
	Fever Generic 1	0	85 36%	51 704	10	322 7/11	275 /170	46 72%	100.00%	0.00%		
Earth 10- 20- 20- 20- 20- 20- 20- 20- 20- 20- 2	Availabilit Availabilit 0-9% 19% -29% -39% -39% -59% -59% -69% -69% -69% -69% -69% -69% -69% -000	y by L	ocation	Ctilization 0 000	0-9% 20-29% 40-49% 60-69% 80-89% 100%	o 100	ge Utilizatio	n Utilization	Maxim Utiliza 20-29% 40-49% 60-69% 100% 0	num Trans ation by Ro	port bute	400
_	Nu	mber C	of Locatio	ons	_	Numbe	er Of Locations	5		Number Of L	ocations	\Box
Birth Cohort Size <100 ■ 100-299 ■ 300-999 >1000					Levels Department Commune HealthPost Central			Origin Level Department Commune HealthPost Central			nmune ral	

HERMES logistics team

Shawn T. Brown, PhD Technical Lead

Bruce Y. Lee, MD, MBA Scientific Lead

Jay DePasse Developer

Leila A. Haidari, MPH Coordinator

Cara Barrett Administrative Coordinator

Jim Leonard Developer

Joel S. Welling, PhD Developer

Eli Zenkov Developer

