THE NEED FOR OFF-GRID VACCINE STORAGE.

Existing products did not address this need

Solar direct drive fridges

- High equipment and installation costs
- Deployment requires skilled technicians and takes 1 to 2 days.
- In high ambient temperatures, significant energy consumption.
- In urban locations, may not be a suitable place to fit PV array.

Absorption fridges – kerosene or LPG

- Poor temperature control and are not frost free.
- Fuel costs.

Vaccine carriers using ice packs

- Only maintain a safe temperature for a few days in hot ambient.
- High risk of freezing the payload.

High density urban

First response emergency relief, or for covering 1 day's supply for 100 people.

High risk of freezing the payload.

High equipment and installation costs.

Poor temperature control and are not frost free.

Vaccine carriers using ice packs

- Not suitable.

Advanced modelling

Following success of the proof of concept, BMGF and the Bill & Melinda Gates Foundation commissioned further work to develop the LTPD.

Using ice as energy storage in high ambient temperatures without active cooling was a challenge. A 1:1 scale prototype was developed using state of the art insulation using vacuum insulation panels (VIPs) on an innovative arrangement of vacuum insulation panels to isolate the cold section from ambient.

A COMSOL-Multiphysics model was developed by Brunel University to simulate the performance of the LTPD and examine the impact of variations in storage conditions on the performance of the prototype LTPD.

Product development

- Improved insulation and added Sure Chill freeze protection to allow use of ice packs under any ambient conditions.
- Improved insulation and added Sure Chill freeze protection to allow use of ice packs under any ambient conditions.
- Improved insulation and added Sure Chill freeze protection to allow use of ice packs under any ambient conditions.
- Improved insulation and added Sure Chill freeze protection to allow use of ice packs under any ambient conditions.

Quantitative data from the trial revealed:

- The ambient temperature ranged from 20 - 37°C inside the health posts.
- The vaccine compartment remained between 2 - 8°C except when the vaccine compartment door was opened. This is seen as spikes in the vaccine compartment temperature profile.
- Minimum temperature observed over 3 months was 4.1°C, clearly demonstrating the freeze-free safety inherent in the Sure Chill technology.
- Freeze-tag® monitors were installed in LTPD units to record cumulative temperatures occurring in the vaccine chamber.

Objective

- Simple to use
- Robust and reliable
- No power required, “passive” operation
- Maintain stable, safe vaccine storage temperatures for up to 35 days in hot conditions
- Guaranteed freeze free
- No ice pack conditioning required
- Quick and easy to set up

Device Format

- Robust and durable polyethylene casing.
- Pack compacted – only the ice remains closed for reusing.
- Easy access to vaccine compartment with good visibility of payload.
- Easy portability.
- Internal Sure-Chill elements transferring cooling from ice packs to vaccine compartment whilst preventing freezing.
- External solar powered temperature display.

Results

Outreach: An enhanced vaccine carrier has been developed with improved insulation and added Sure Chill freeze protection to allow use of ice packs under any ambient conditions.

Accessories

- On-site ice generation: A simple 120 litre absorption fridges manufactured for Bangladesh to create use of ice packs under any ambient conditions.

On-site ice generation

- A simple 120 litre absorption fridges manufactured for Bangladesh to create use of ice packs under any ambient conditions.

Phase 2 Field Trials

- Vaccine compartment remains between 2 - 8°C except when the vaccine compartment door was opened. This is seen as spikes in the vaccine compartment temperature profile.
- Minimum temperature observed over 3 months was 4.1°C, clearly demonstrating the freeze-free safety inherent in the Sure Chill technology.
- Freeze-tag® monitors were installed in LTPD units to record cumulative temperatures occurring in the vaccine chamber.

Perfect applications

Small off-grid rural: Providing safe vaccine storage with monthly deliveries of vaccine and ice packs

- Vaccine storage where grid is unreliable and PV is not available.
- Rapid deployment: No remote service, no for covering equipment break down in established cold chain

High density urban: Vaccine storage where grid is reliable and PV is available.

Acknowledgements

Sure Chill is keen to hear from countries interested to trial the new device. Contact us at hello@surechill.com