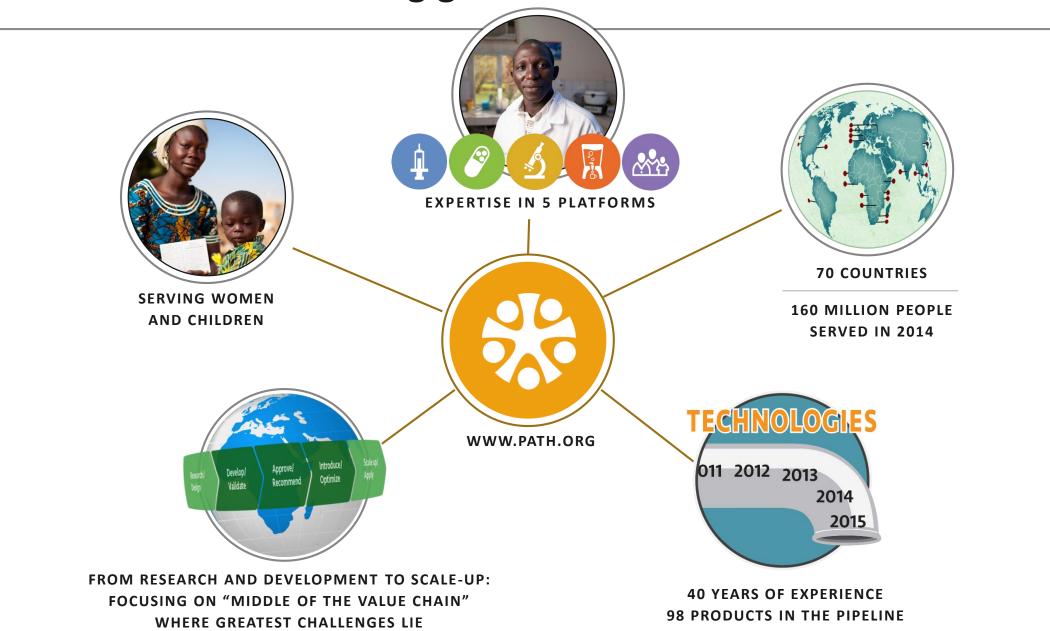
Assessing the Total Cost of Ownership for Cold Chain Equipment

April 2016

Copyright PATH, 2016. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.



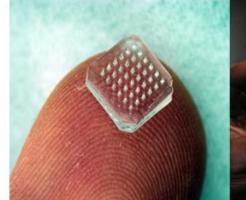
Overview

- Background on PATH and our work in vaccine and pharmaceutical technologies.
- Introduction to the PATH Total Cost of Ownership (TCO) tool.
- A three-step approach to understanding TCO.

PATH: Accelerating global health innovation

PATH's work in vaccine and pharmaceutical technologies

Our mission


To advance vaccine and pharmaceutical product and system innovations that reduce costs, ease logistics, improve safety, expand coverage, and maximize public health impact in low-resource settings.

Our approach

- Three interrelated yet thematically unique technical portfolios:
 - Formulation and Stabilization Technologies.
 - Packaging and Delivery Technologies.
 - Supply Systems and Equipment.

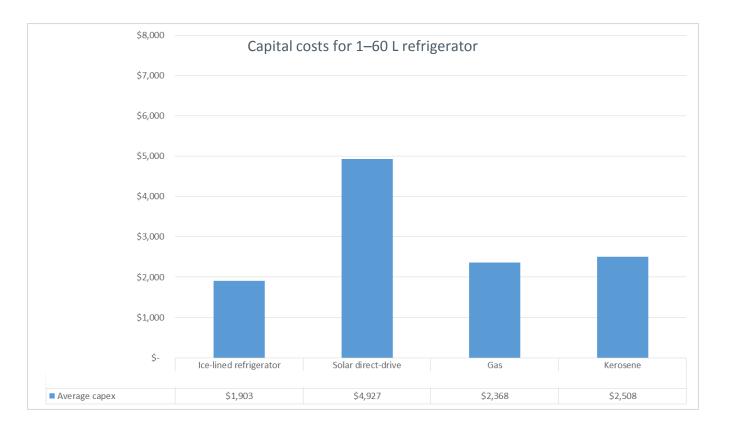
You recognize the need for new cold chain equipment—now what?

How can you:

- Become aware of available World Health Organization PQS prequalified cold chain equipment solutions?
- Evaluate or compare cold chain equipment costs and operating costs over time?
- Budget or plan for continued operation of new cold chain equipment?

Solution:

The PATH Total Cost of Ownership tool


What is total cost of ownership?

Total cost of ownership refers to all costs associated with owning and operating a unit of equipment over its useful life expectancy.

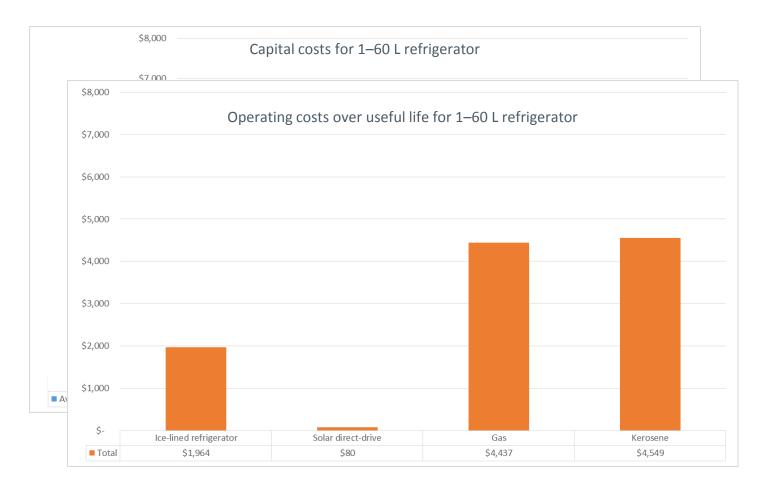
This includes:

Capital costs—

The up-front unit price for equipment (as well as installation costs and spare parts).

What is total cost of ownership?

Total cost of ownership refers to all costs associated with owning and operating a unit of equipment over its useful life expectancy.


This includes:

Capital costs—

The up-front unit price for equipment (as well as installation costs and spare parts).

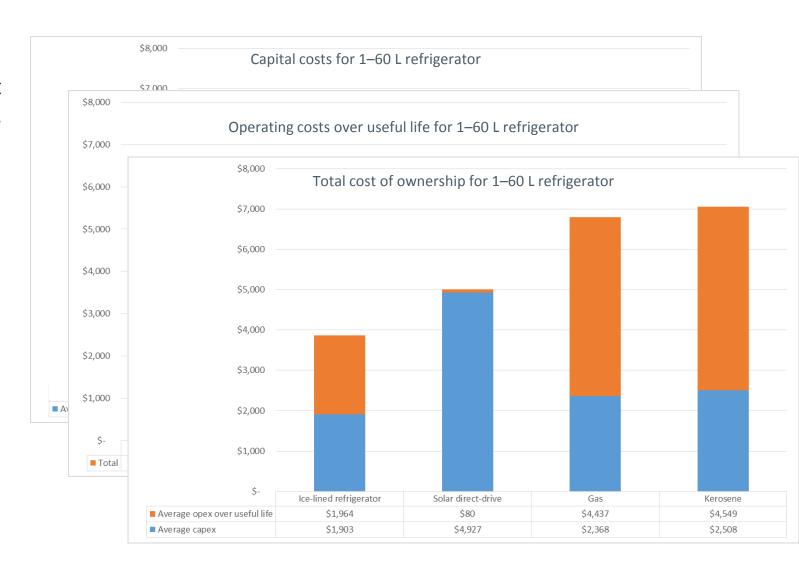
Recurring operating expenses—

The ongoing costs for energy or fuel, planned maintenance, and equipment repairs over the useful life.

What is total cost of ownership?

Total cost of ownership refers to all costs associated with owning and operating a unit of equipment over its useful life expectancy.

This includes:


Capital costs—

The up-front unit price for equipment (as well as installation costs and spare parts).

· Recurring operating expenses—

The ongoing costs for energy or fuel, planned maintenance, and equipment repairs over the useful life.

 The combination of capital costs for equipment (capex) and recurring operating costs (opex) over the expected useful life of a CCE unit.

The PATH Total Cost of Ownership tool

Includes:

- Database of 87 CCF models.
 - 79 are PQS prequalified through PQS categories E001, E003, and E004.
- Country-specific inputs for localized costs (e.g., energy and labor).
- Need- and facility-based analysis for understanding optimal solutions, not just equipment comparisons.

COLD CHAIN EQUIPMENT TOTAL COST OF OWNERSHIP TOOL

version 1.0.5

Instructions for use are located in the Overview & Instructions worksheet as well as in each of the black-colored worksheets.

Please be sure to enable macros before using or the tool will not function properly.

Click for Google instructions

TCO tool website

To check for the latest update of the Total Cost of Ownership (TCO) tool, click the link to compare versions.

Overview

Quick links

Instructions Acronyms FAQ CCE decision tree Total solution cost Comparison tools

Country/local assumptions

Labor, maintenance, and installation Country and segment input and assumptions assumptions

Technology/model assumption worksheets

Cold room/freezer room Ice-lined refrigerator Freezer Solar direct drive refrigerator Long-term passive storage device Solar w/battery Gas refrigerator Kerosene refrigerator

© 2016 PATH This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

PATH thanks and acknowledges the following individuals and organizations for their contributions to the development of the tool: James Cheyne, Terry Hart, Tory Hart, John Lloyd, Steve McCarney, Soren Spanner, the World Health Organization, the United Nations Children's Fund, and Clinton Health Access Initiative. This work was conducted by PATH and supported in whole or part by a grant from the Bill & Melinda Gates Foundation. The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Foundation.

A three-step approach to understanding total cost of ownership

 General comparisons of hardware and installation, plus recurring operating costs.

2 Compare models

 Model-to-model comparisons paired with local assumptions.

3 Compare total solution costs

 Segmented comparison of costs for number of units required to meet facility needs over a defined period of time.

Step 1. Compare technologies

Country X wants to understand the cost differences between their existing LPG absorption refrigerators and SDD refrigerators as they prepare a recommendation for procurement. They have identified the need for 15–25 L of capacity per refrigerator, off-grid.

Steps:

• Select the comparison worksheet.

Comparisons ==> TCO Comparison Cost per Liter Comparison Opex Comparison

- Use the filters to select capacity and technology in comparison worksheets.
- Compare technology TCO.

Step 2. Compare models

Row Labels

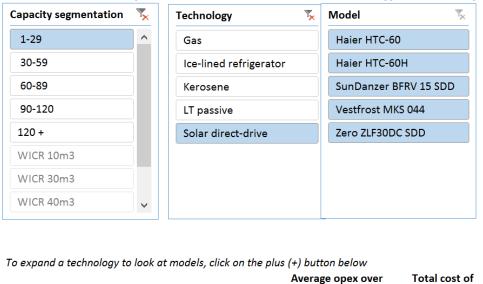
■ Solar direct-drive

Haier HTC-60

Haier HTC-60H

Vestfrost MKS 044

Zero ZLF30DC SDD


SunDanzer BFRV 15 SDD

Country X now wants to look at a breakdown of the different SDD refrigerator options.

\$6,000

• Step: Expand the selection in the table to view and compare TCO for SDD models.

Total cost comparison over useful life (per unit)

Average capex

\$4,000						
\$3,000 -						
\$2,000 -						
\$1,000 -						
\$-	Vestfrost MKS 044	SunDanzer BFRV 15 SDD	Haier HTC-60	Zero ZLF30DC SDD	Haier HTC-60H	
			Solar direct-drive			
Average opex over useful life	\$80	\$80 \$80		\$80	\$80	
Average capex	\$3,969	\$4,001	\$4,446	\$5,086	\$2,972	

4,095 \$

3,969 \$

4,001 \$

4,446 \$

5,086 \$

2,972 \$

useful life

80

ownership

4,175

4,049

4,081

4,526

5,166

Step 3. Evaluate country solution

Complete Country Input worksheet

- Country X has identified 45 facilities that need new refrigerators.
 - These facilities all have less than 4 hours of stable electricity per day.
- Resupply of vaccines occurs monthly.
- Average catchment population per center is around 110,000 or 5 million people across 45 facilities with a birth rate of 2.5%.
- The tool calculates the vaccine volume needed per facility to be 25.27 liters with monthly delivery.

Vaccine selection and volume demand inputs

Annual vaccine capacity drivers

Cold chain segmentation being evaluated	User-defined field			
Number of vaccine storage facilities to equip	45			
Vaccine deliveries per year	12			
Safety stock (%)	0%			
Refrigerator utilization (% filled)	100%			

Is needed storage volume known from other forecasting tool?

NO (select)

If Yes, what is the annual storage volume needed in liters?

If No, complete the following tables in section below.

Population of facilities to equip	5,000,000
Annual birth rate	2.5%

Vaccines Included in Schedule (select all vaccines used)

Vaccines (select from dropdown)	National coverage target	Annual vaccine volume demand (cm³)		
BCG-lyophilized-20	90%	365,625		
TT-liquid-20	80%	535,150		
Measles-lyophilized-5	90%	3,234,706		
OPV-liquid-20	90%	388,125		
DTP-HepB-Hib-liquid-10	90%	1,091,912		
PCV-13-liquid-1	90%	4,094,318		
Rota_RV1-liquid-1	90%	3,938,636		
-				
-				
**				
#				
*				
-				
-				
+				

Estimated vaccine volume per facility per delivery 25.27

Step 3. Total solution costs output example

Compare total costs in context of country needs

Total solution costs over forecasted years

When selecting a capacity segment, it may be useful to select the next larger segment as well to compare costs for larger equipment.

				Useful life					Net vaccine	Gross freezer	Operating	Holdover	Shipping		TechNet
Technology/Model	.	Solution Cost	Number of Units required	(years)	Uı	nit price	Opex per year	TCO per unit	capacity (liters)	capacity (liters)	range (°C)	(hours)	weight (kg)	Dimensions	review
■ SDD	\$	314,832	65	10											
SunDanzer BFRV 15 SDD	\$	378,250	90	10	\$	2,440	\$ 8	\$ 4,203	15	5 0	5 to 43	107.48	147	77 x 69 x 59.5	BFRV 15 SDD Review
SunDanzer BFRV 55	\$	240,849	45	10	\$	3,235	\$ 8	\$ 5,352	55	0	5 to 43	65.16	218	88 x 96.5 x 71	BFRV 55 Review
Vestfrost MKS 044	\$	375,407	90	10	\$	2,396	\$ 8	\$ 4,171	20	0	20 to 32	114	88	87.6 x 72.7 x 69.7	MKS 044 Review
Vestfrost VLS 054 Green Lin	e S \$	229,211	45	10	\$	3,043	\$ 8	\$ 5,094	56	0	5 to 43	79.4	85	85 x 72 x 60	VLS 054 Green Line SDD Review
Haier HTC-60	\$	418,310	90	10	\$	2,750	\$ 8	\$ 4,648	2:	0	10 to 32	119.42	98	78.8 x 65.4 x 87.5	HTC-60 Review
Godrej & Boyce GVR50DC	SDE \$	278,550	45	10	\$	4,070	\$ 8	\$ 6,190	47	7 0	10 to 43	83	240	121.5 x 79.5 x 75	GVR50DC SDD Review
Zero ZLF30DC SDD	\$	243,449	45	10	\$	2,950	\$ 8	\$ 5,410	27	7 0	5 to 32	87.2666667	65	102.5 x 56 x 60	N/A
Haier HTC-60H	\$	285,705	90	10	\$	1,380	\$ 8	\$ 3,175	2:	1 0	5 to 43	109.35	110	78.8 x 65.4 x 87.5	N/A
B Medical TCW 40SDD	\$	383,759	45	10	\$	6,121	\$ 8	\$ 8,528	36	4.8	5 to 43	93.4	120	78 x 103 x 90	TCW 40SDD Review

Thank you

To download the most recent version of the tool in English or French, please visit:

www.path.org/publications/detail.php?i=2576

Questions, feedback, and suggestions?

Contact Matt Morio at mmorio@path.org
Business Analytics Officer
PATH

www.path.org

